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The scattering of electrons with inhomogeneities produces modulations in the local density of states of a
metal. We show that electron interference contributions to these modulations are affected by the magnetic field
via the Aharonov-Bohm effect. This can be exploited in a simple scanning-tunneling-microscopy setup that
serves as an Aharonov-Bohm interferometer at the nanometer scale.
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Scanning tunneling microscopy �STM� provides a power-
ful tool to measure the density of states.1 The scattering of
electrons with inhomogeneities is known to modify the cor-
responding density of states producing local modulations.
These modulations were first probed by STM with atomic
resolution in Ref. 2, where standing-wave patterns in the
local density of states �LDOS� arising from scattering of
electrons with impurities and step edges were observed on
the surface of Cu�111�. These patterns encode information
about the electronic properties of the corresponding system.
For example, in the case of a two-dimensional electronic
system, a point defect produces oscillations in the LDOS
with wavevector 2kF for very low-bias volatge.2 The period
of these oscillations changes as a function of the bias volt-
age, from which one can infer the spectrum of the electrons.
In the case of a superconductor, there can be additional fea-
tures reflecting the symmetry of the superconducting gap.3

Moreover, atomic manipulation permits the engineering of
surfaces, making it possible to confine electrons into the so-
called quantum corrals.4 This has attracted great attention
since it permits the study of lifetime effects, Kondo physics,
single-atom gating, etc.5 Very recently, open nanostructures
have been shown to be amenable for quantum holographic
encoding.6 In the following we show that under suitable con-
ditions, the LDOS exhibits oscillations due to the magnetic
field that can be interpreted as due to the Aharonov-Bohm
effect. Therefore the STM setup can be designed to serve as
an Aharonov-Bohm interferometer at the nanometer scale.

For the sake of concreteness we consider the close-packed
surface of a noble metal where the so-called Shockley sur-
face states form a two-dimensional nearly free electron gas.
Two atoms deposited on top of this surface can be modeled
as two point scattering potentials for the surface electrons.
This forms the simplest Aharonov-Bohm interferometer,
where the role of the two different paths in conventional
Aharonov-Bohm setups is played by the two scattering paths
shown in Fig. 1. In the presence of a magnetic field, elec-
trons scattering along these loops pick up different phases
depending on whether the scattering is clockwise or anti-
clockwise �the two paths being connected by time-reversal
symmetry at zero field�. This affects the interference contri-
bution to the LDOS measured by the STM tip, which even-
tually exhibits oscillations as a function of the magnetic flux
that passes through area enclosed by the above paths. The
physics of these LDOS oscillations is similar to the effect of

the magnetic field on weak localization in disordered two-
dimensional metals.7

The dI�r ,V� /dV maps obtained experimentally are deter-
mined by the LDOS of the sample N�r ,�=eV�, the tip den-
sity of states, and the tunneling matrix elements.5,8 In the
Tersoff-Hamann approximation with a constant tip density of
states dI /dV is proportional to N.5,8 However, the oscillations
of the LDOS that we discuss are picked up by the experi-
mental dI /dV even if the above proportionality is lost due to
voltage dependence of the tunneling matrix elements or due
to variation in the tip density of states with energy. The
LDOS of the sample can be obtained from the corresponding
retarded Green’s function as

N�r,�� = −
2

�
Im GR�r,r;�� �1�

�the factor 2 is due to spin degeneracy�. For a two-
dimensional free-electron gas the Green’s function is

GR�r,r�;�� = − i�NH0
�1��k����r − r��� . �2�

Here N=m / �2��2� is the density of states of the electron gas
per spin, H0

�1� is the zeroth-order Hankel function of the first

FIG. 1. �Color online� STM interferometer. r represents the po-
sition of the STM tip on the surface and r1 and r2 two impurities.
The LDOS measured by the STM tip contains interference contri-
butions due to electrons traveling along the two paths shown in the
figure. The magnetic field affects this interference via the
Aharonov-Bohm effect, producing oscillations in the LDOS that is
measured by the tip.
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kind and k��� is given by the dispersion relation k���
=kF�1+� /��1/2, where �=�2kF

2 / �2m�. For large distances
�r�k−1���� we have

GR�r,�� � − iN� 2�

k���r
�1/2

ei�k���r−�/4�. �3�

The presence of impurities can be modeled by a term

Himp =	 drU�r���r� �4�

in the Hamiltonian of the system, where U is the scattering
potential associated with the impurities and � is the elec-
tronic density. Following a perturbative approach5 the
Green’s function can be expressed as G=G0+�G, where G0
is the Green’s function in the absence of impurities and

�G�r,r�� =	 dr�G0�r − r��U�r��G0�r� − r��

+	 	 dr�dr�G0�r − r��U�r��

	G0�r� − r��U�r��G0�r� − r�� + . . . �5�

The dependence on the frequency is dropped since the scat-
tering is assumed to be elastic. The latter quantity in Eq. �5�
contains the interference contributions to the LDOS we are
interested in �i.e., from terms second order and higher in the
scattering potential�.

Two identical point impurities are described by the scat-
tering potential

U�r� = U0���r − r1� + ��r − r2�� . �6�

In this case the quantity �G�r ,r� naturally contains two types
of terms. On one hand, there are �additive� terms in which
the scattering with the impurities is produced separately. The
Fourier transform of this contribution has quasiparticle
peaks, which contains information about the dispersion of
the electrons �see, e.g., Ref. 3�. This contribution, however,
plays no role in the physics that we intend to study. On the
other hand, there are terms involving scattering with both the
impurities. Among the latter terms, there are processes in
which the semiclassical scattering paths enclose a finite area
as in Fig. 1. It is important to note that such loops occur in
pairs connected by time-reversal symmetry �i.e., clockwise
and anticlockwise�. For example, to the lowest order in the
impurity potential, the contribution to the Green’s function
due to closed loops reads

�Gloop
�2� �r,r� = U0

2G0�r − r1�G0�r1 − r2�G0�r2 − r� + �1 ↔ 2� .

�7�

In the absence of a magnetic field the two terms in this ex-
pression are equivalent �due to time-reversal symmetry�, and
therefore give the same contribution to the LDOS �it can be
said that the interference is constructive�. In the presence of
a magnetic field, however, time-reversal symmetry is broken.
Then electrons traveling clockwise and anticlockwise along
the above loop acquire different phases, so the subsequent
interference is affected. This results in Aharonov-Bohm os-

cillations of the LDOS as we shall see explicitly below.
Next we demonstrate that the simple geometrical picture

above remains unchanged when higher order terms in the
impurity potential are taken into account. At higher order we
have to deal with the following additional ingredients: �i�
multiple scattering at the impurities and �ii� multiple scatter-
ing where semiclassically the particle goes back and forth
between the two impurities. The first type of multiple scat-
tering can be easily taken into account by replacing each of
the scattering potentials by their respective T matrices. That
is,9

U0 → Ũ0 =
U0

1 − U0G0�0�
. �8�

As regards the second point, we note that �Gloop�r ,r� is en-
tirely due to processes where the path between the impurities
is traversed an odd number of times �otherwise the scattering
path does not enclose a finite area�. In the second order con-
tribution Eq. �7�, for example, the path between the impuri-
ties is traversed once. At O�U0

4� there are contributions
where the path is traversed three times, and so on. Taking all
this into account, we obtain

�Gloop�r,r� = W2G0�r − r1�G0�r1 − r2�G0�r2 − r� + �1 ↔ 2� ,

�9�

where

W2 =
Ũ0

2

1 − Ũ0
2G0�r1 − r2�G0�r2 − r1�

. �10�

It is worth noticing that in all the processes that finally give
rise to Eq. �9� we are actually dealing with the same area,
since to go back and forth along the same line, for example,
does not change the area of the resulting loop. This is the
simple reason why the nontrivial phase relation between the
clockwise and the anticlockwise paths in the presence of a
magnetic field is not washed out by multiple impurity scat-
tering.

Let us now consider explicitly the influence of the mag-
netic field. In the low-field regime �see below� we can use
the semiclassical approximation for the electron Green’s
function:7

G0�r − r�� = exp�i
�


0
	

r

r�
A�l� · dl�G00�r − r�� . �11�

Here G00�r−r�� represents the Green’s function in the ab-
sence of magnetic field, A is the vector potential �B=�
	A�, 
0=h / �2e� is the flux quantum, and the integral is
along the straight line connecting r and r�. The magnetic
field then enters the interference contributions to the LDOS
via complex factors e�i�
/
0, where 
 is the magnetic flux
through the area enclosed by the corresponding scattering
path �the different signs of the phase corresponds to anti-
clockwise and clockwise line integrals respectively�. As a
result, the LDOS can be written as
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N�r,�� = NB=0�r,�� + Nloop�r,���cos��
/
0� − 1� ,

�12�

where NB=0 is the zero-field total LDOS and

Nloop�r,�� = −
2

�
Im �Gloop�r,r;�� �13�

represents the �constructive� interference contribution due to
all closed paths in the absence of a magnetic field �computed
from Eq. �9� with G00�. This interference process picks up a
nontrivial phase in the presence of a magnetic field, giving
rise to oscillations in the LDOS as in Eq. �12�, which is a
manifestation of the Aharonov-Bohm phenomenon.10 This
can be revealed by varying either the magnetic field or the
relative position between the STM tip and the impurities
since 
 changes in both cases. We note that, irrespective of
the position of the STM tip, the magnitude of the correction
to the LDOS reduces with B for low magnetic fields. As in
the case of negative magnetoresistance in weak localization,
this is due to the fact that magnetic field induces destructive
interference between the contribution of the two semiclassi-
cal paths.

Next we discuss the limitations of our calculations and the
feasibility of our proposal to use the STM as an Aharonov-
Bohm interferometer at a nanometer scale. The expression
�12� for the LDOS has been derived within a semiclassical
approach, so it holds as long as Eq. �11� can be used for
describing the influence of the magnetic field on the electron
system. This is possible if the magnetic field is such that the
Fermi wavelength is much smaller than the Landau orbits:

�F  aB = � 
0

�B
�1/2

. �14�

The magnetic field needed to observe a complete Aharonov-
Bohm oscillation can be estimated as

B2� 
 4
0/d2, �15�

where d is the characteristic distance in the setup, i.e., the
distance between the impurities and/or between the impuri-
ties and the position of the tip. For d
40−20 nm this field
is B2�
5–20 T, which corresponds to Landau orbits aB

11−6 nm. For Cu�111� and Ag�111� �F=2.95 nm and 7.6
nm, respectively, and therefore the condition in Eq. �14� for

the semiclassical approximation is valid. Furthermore, in
spite of the fact that the interference signal is long-range in
the sense that Nloop decays as 1 /d in a power-law fashion
�see Eq. �3��, in reality there are dephasing processes that
introduce an extra attenuation �thermal dephasing for ex-
ample�, and which, for simplicity, have not been taken into
account in the current computation. Experimentally, in fact,
the impurity-induced variations in the LDOS are typically
observed up to distances of the order of a few times the
Fermi wavelength, say 10�F.11 Therefore the characteristic
distance in our setup must be d�10�F. For d
40−20 nm
we then need �F�4−2 nm, which still can be smaller than
aB at 5–20 T. Thus we find that the semiclassical interpreta-
tion is good to describe the first few periods of the LDOS
oscillations. The first corrections to our results will be due to
the curvature of the classical trajectories, which can still be
described within the semiclassical picture.12 To describe suf-
ficiently high periods, however, one has to go beyond Eq.
�11� and consider the influence of the magnetic field within a
Landau-level approach. These periods imply magnetic fields
considerably high ��20 T�, so we do not develop this latter
approach here.

The Aharonov-Bohm physics reveals also in the spatial
variations of the LDOS for a fixed magnetic field. In our
setup 
 varies only in the direction perpendicular to the line
connecting the two impurities. In consequence, the STM
scans along this direction will show a periodic envelope due
to the cosine factor in Eq. �12�. With two impurities sepa-
rated 20 nm, fields of 5–20 T give rise to periods of 80 and
20 nm, respectively, for such an envelope �see Fig. 2�.

It is also worth mentioning that the Zeeman splitting, ne-
glected so far, has a trivial influence on the Aharonov-Bohm
oscillations if the spin is conserved in the scattering process.
Nloop in Eq. �12� actually results from contributions associ-
ated with the two spin polarizations. It can be written as
Nloop= 1

2 �Nloop
↑ +Nloop

↓ � if the spin is conserved. The eventual
difference between Nloop

↑ and Nloop
↓ due to the Zeeman split-

ting can be probed by means of spin-polarized STM. How-
ever this difference does not alter the oscillatory behavior of
the LDOS described above. The situation is more subtle if
the spin can flip during the scattering process as a result of,
e.g., spin-orbit coupling. This can affect multiple scattering
in a nontrivial way,13 and can give rise to the analog of the
antilocalization phenomenon if spin components are mea-
sured separately.

B = 5 T

20nm

B = 10 T

20nm

B = 15 T

20nm 20nm

B = 20 T

FIG. 2. �Color online� Expected STM patterns for two impurities 20 nm apart on the Ag�111� surface after subtraction of the B=0 signal.
The horizontal stripes are produced by the Aharonov-Bohm effect in the LDOS, whereas the remaining elliptic features are due to the
interference contributions described by Nloop �with �F=7.6 nm and real W matrices as defined in Eq. �10��.
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In summary, we have shown that magnetic field affects
electron interference contributions to the local density of
states via the Aharonov-Bohm effect. This can be exploited
in building STM devices that serve as Aharonov-Bohm in-
terferometers at the nanometer scale. We have illustrated this
possibility for the close-packed surface of a noble metal with
two atoms adsorbed on top. The role of these atoms consists
in creating strong enough scattering potentials, which can
also be produced, for example, using additional STM tips.

The implementation of this new functionality into the STM
technique might broaden its applications notably, offering
new perspectives for STM studies of the fundamental prop-
erties of surfaces and underlying systems.

We acknowledge I. Brihuega, P. Bruno, E. Kats, and R.
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the Fig. 1.
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